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The fourth-order anharmonic equation of state combined with the Hugoniot relation is used
to describe the thermodynamic response of a solid subject to shock-wave compression. There
is a quasiabsolute agreement in volume-ratio range 1=Vy/V;=0.8 for the five materials con-
sidered: aluminum, copper, silver, sodium, and periclase. This agreement seems to be in-
dependent of the nature and the compressibility of the species. It is possible, therefore, to
calculate the temperature along the obtained curves using the fourth-order anharmonic theory.
There is a discrepancy of less than 1% between our results and the other published results.

1. INTRODUCTION

It has been shown'~® that the fourth-order anhar-
monic theory leads to the interpretation of the
experimental data obtained from shock-wave-com-
pression measurements on materials with cubic
crystal structure. The fourth-order anharmonic
approximation modifies the Mie—Griineisen equa-
tion of state*:
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where P, ¢, v, Us, and V are the external pres-
sure, the potential energy of the crystal, Grii-
neisen’s ratio, the vibrational contribution to the
internal energy, and the specific volume of the
material, respectively.

At the fourth order, the free energy is given by

F=¢(V)+Fg+ FXT) . (@)

Here (i) the potential energy can be expanded into
a Taylor series (omitting the terms higher than
fourth order) with respect to the components of the
Lagrangian strain tensor A. In this case, ¢(V),
the potential energy, is given by
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using the Voigt notation. The unstrained state is
denoted by the primes.
(ii) The vibrational free energy F is given by

Fo=23, [37w;+ kT In(l —e™i/*T)] | (4)

where w; are the eigenfrequencies of the solid
summed over the j vibrational eigenfrequencies,
7 is the Planck constant divided by 2m, & is the
Boltzmann constant, and T is the absolute tempera-
ture.

In the case of the fourth-order approximation,

the w, are of the second order with respect to the
strain components A;;; therefore it is sufficient
to expand F, up to the second order:
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where the derivatives are calculated in the unstrained
state.
After Leibfried and Ludwig* and Thomsen, 5
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and
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where U’ and C/, are the internal vibrational energy
and specific heat at constant volume of the solid
in the unstrained state. Griineisen’s ratio v;; is
defined in its tensorial expression as
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if A;;= 3% (F, F,;—0;;) where F is the tensor gradi-
ent of the Lagrangian strain coordinates.

In Eqs. (6)-(8), the Griineisen approximation is
applied, which consists of the replacement of the
eigenfrequencies w;, by their spectral mean ®.

(iii) F*(T) is the anharmonic contribution of the
free energy in Eq. (2), depending upon the absolute
temperature only.

In the case of cubic crystals, the equation of
state is given by P=- (3F/8V), and the Lagrangian
strain tensor is spherical [i.e., A;;=Ab;;, where
A=5(v/V')?’®~1) and b, is the Kronecker 8].
Using Eq. (2), which has been previously detailed,
the fourth-order anharmonic equation of state can
be written
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P(V,T)=-3K" (V/V')1/3(A - $T A2, I 7 A°
- WY VK) {57+ [ =-v21-TClUL]A} ,
(9)

where

Z aB; = SK' Z CGBT )
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9%\’
A= gigr 2 Cus, A= 52_ 2 (aA,) ;
A isthe strainderivative of Griineisen’stensor inthe
unstrained state, and y’ is Griineisen’s ratio in the
unstrained state.®

The solution, by iteration, of the set of five
anharmonic equations5 gives the constants V', K’,
y', T, and A. These are expressed in terms of
five experimental data: volume of the zero state,
V, (the zero state is defined by P=0and T=T,
=300 °K); thermal-expansion coefficient ag;
adiabatic compressibility Kj.; pressure derivative
of the isothermal compressibility calculated in the
zero state, (6KT/8P),|,, and temperature deriva-
tive of the adiabatic compressibility calculated in
the zero state, (8K5/87)pl,. It hastobe empha-
sized that V', K’ ', T, A, and A do not depend
on the deformed state. However, A depends on
the second pressure derivative of the isothermal
compressibility calculated in the zero state,
(8°KT/aP% 4 1,, whichis not known and cannot be
determined experimentally at the present time. To
evaluate A, the Hugoniot expression® might be
used. The general form of the Hugoniot equation
is

Uy=Up=z(Py+Po) (Vo= Vi) , (10)

where Uy, Uy, Vo, Vy, Py, and P, are specific
internal energies, volumes, and pressures ahead
of and behind the shock wave, respectively. Taking
P,=0 the Hugoniot equation will be

Up=Uo=3Py(Vo-Vpy). (11)

According to the fourth-order anharmonic theory,
Uy may be given by

Up=(Vy)+Us(Vy, T) . (12)

Substituting (11) and (12) into Eq. (1) we get

49 ip (Vo _\_ 0Vw) Vo
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with
d¢ by : v -1/3 3 o 4
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For a cubic crystal one can derive from Eq. (8), .
using the definitions of ¥’ and X given in Eq. (9),
that the volume dependence of the Griineisen param-
eter y is given by

(V)= (V/V'23(y' + 304) . (14)

At a single Hugoniot point (P4, V) Eq. (13) has
only one unknown A, which is determined thereby.
Knowing A, Eq. (13) might be rearranged to give
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II. COMPARISON OF HUGONIOT CURVES WITH
FOURTH-ORDER CURVES

Using Eq. (15), fourth-order curves Hy (P,, Vy
locus) have been calculated for five solids, 2 four
metals (aluminum, copper, silver, sodium), and
one mineral (periclase). The calculated curves
compared with the experimental Hugoniot curves’
are shown in Figs. 1(a)-1(e). It can be seen that
for the five materials considered there is prac-
tically no difference between the H, and the Hugoniot
curves in the range of volume ratio of 1=V, /V,
=0.825. Therefore, within these limits, it seems
that the agreement between these curves does not
depend (a) on the nature of the considered materi-
als (the results are obviously very similar for
copper and silver on the one hand, and for peri-
clase on the other hand) or (b) on the compressibili-
ty of the considered solid (it is clear that the sodi-
um is more compressible than the other four
solids). Finally, a good agreement between theory
and experience can be observed in a relatively ex-
tended pressure range. For instance, there is a
close fit of the curves up to 300 kbar for aluminum
and up to 580 kbar for copper and periclase.

IIl. DETERMINATION OF TEMPERATURE ALONG
FOURTH-ORDER CURVES

In the range of agreement between the fourth-
order curve and the Hugoniot curve, P, satisfies
Eq. (1); therefore we have

d¢ Us(Vy, T)

Py==nmt & +¥(Vy) Va (18)
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In the right-hand side of the expression, the ab-
solute temperature T figures in Ug only. The in-
ternal vibrational energy is given by

Us(T, Vy)= T(U/T)pewe + ¥ Nsk®p , an

where 3N, is the total number of normal modes,
®p is the Debye temperature and 4N, k0 , is the
limiting expression of Uy(T, V) when T— 0. * The
numerical table of Gray, ® where (U/T)petye VS
(®p,/T) is given, was used to compute the tempera-
ture in the range of agreement of the Hugoniot and
H, curves. The results of these calculations are
shown in Figs. 2(a)-2(e) and are compared with
previous data. ®°




